Calculation Methods for Year 5

At Homefields, we use 'Concrete, Pictorial, Abstract' (CPA) which is a highly effective approach to teaching that develops a deep and sustainable understanding of maths in pupils.

Concrete step of CPA

Concrete is the "doing" stage. During this stage, students use concrete objects to model problems. Unlike traditional maths teaching methods where teachers demonstrate how to solve a problem, the CPA approach brings concepts to life by allowing children to experience and handle physical (concrete) objects. With the CPA framework, every abstract concept is first introduced using physical, interactive concrete materials. For example, if a problem involves adding pieces of fruit, children can first handle actual fruit. From there, they can progress to handling abstract counters or cubes which represent the fruit.

Pictorial step of CPA

Pictorial is the "seeing" stage. Here, visual representations of concrete objects are used to model problems. This stage encourages children to make a mental connection between the physical object they just handled and the abstract pictures, diagrams or models that represent the objects from the problem. Building or drawing a model makes it easier for children to grasp difficult abstract concepts (for example, fractions). Simply put, it helps students visualise abstract problems and make them more accessible.

Abstract step of CPA

Abstract is the "symbolic" stage, where children use abstract symbols to model problems. Students will not progress to this stage until they have demonstrated that they have a solid understanding of the concrete and pictorial stages of the problem. The abstract stage involves the teacher introducing abstract concepts (for example, mathematical symbols). Children are introduced to the concept at a symbolic level, using only numbers, notation, and mathematical symbols (for example, +, -, x, /) to indicate addition, multiplication or division.

Expectation in Year 5

- Addition: Add numbers with more than 4
- digits(including money, measures and decimals with a different number of decimal places)
- **Subtraction**: Subtract with at least 4-digit numbers (including money, measures and decimals)
- Multiplication: Multiply up to 4-digit numbers by 1 or
- 2 digits (introduce column multiplication)
- **Division**: Divide up to 4 digits by a single digit,
- including those with remainders (chunking leading into short division method)

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Numb	er: Place	Value	Num Additi Subtr	nber: on and action	Stati	stics	Num Multipl and Di	iber: ication ivision	Measur Perime Ar	Consolidation	
Spring	Numbe ai	er: Multip nd Divisio	lication on			Number:		Num Decima Percer	Consolidation			
Summer		Number:	Decimals	5	Geome	try: Prope Shape	erties of	Geometry: Position and Direction	Measur Conve Un	rement: erting hits	Measurement: Volume	Consolidation

Addition: Add numbers with more than 4 digits (including money, measures and decimals with a different number of decimal places)

	£	2	3	●	5	9										3	5	7	4	6		
+	£		9	Đ	6	4	-								+		7	4	3	8		
	£	3	3	•	2	3	_									4	3	1	8	4		
		1	1		1											1	1		1			
				_																		
Add the ones column first. If the																						
total is results in a two-digit																						
number, place the tens digit under																						
the next column So $9+4=13$																						
Continue to do this for each																						
column, working from right to left.																						
For calculations involving decimal																						
numbers, we advise children to																						
place the decimal point in the																						
answer space first to avoid																						
forget	ting	g it.												 								

Subtraction: Subtract with at least 4-digit numbers (including money, measures and decimals)

8279 - 485.6 = 6 4 34 3 0 8 0 3 2 4 8 5 5 7 6 7 2 9 2 8 7 7 7 3 4

As with the addition method, work from right to left (ones then tens then hundreds, etc). If the digit on the top row is too small, exchange from the next column to the right. So, a ten is exchanged from the tens column for ten ones. With practice, this method will become embedded and can then be

used for problem solving.

Multiplication: Multiply up to 4-digit numbers by 1 or 2 digits (introduce column multiplication)

Multiplication: Multiply up to 4-digit numbers by 1 or 2 digits (introduce column multiplication)

Division: Divide up to 4 digits by a single digit, including those with remainders (chunking leading into short division method)

Short method

6

This 'short' method is used when a number is being divided by a single digit number. 6 will not divide into the 5 so we divide 53 by 6. This gives us 8 (6x8=48) but 5 is left over so that is put next to the zero. Now it is 50 divided by zero. See the above example.